Three New Sesquiterpene Pyridine Alkaloids from Euonymus fortunei

by Ying Da Yanga), Guang Zhong Yanga), Mao Chuan Liao*a)b), and Zhi Nan Mei*a)

- a) Laboratory for Natural Product Chemistry, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, P. R. China (phone: +86-27-67843220; fax: +86-27-67843220; e-mail: meizhinan@163.com)
- b) College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, P. R. China (phone: +86-27-67841196; fax: +86-27-67841196; e-mail: sippr1976@163.com)

Three new macrocyclic β -dihydroagarofuran-type sesquiterpene pyridine alkaloids, fortuneines A (1), B (2), and C (3), together with the four known alkaloids wilfornine E (4), aquifoliunine E-I (5), euoverrine B (6), and euojaponine I (7), were isolated from the aerial parts of *Euonymus fortunei*. Their structures were elucidated by spectroscopic methods, including HR-ESI-MS, 1 H- and 1 C-NMR, DEPT, 1 H, 1 H-COSY, HSQC, HMBC, and ROESY. This is the first isolation of the above sesquiterpene pyridine alkaloids from this plant, except for compound 6.

Introduction. – The genus *Euonymus* (Celastraceae) has been used as traditional Chinese medicine for hundreds of years. Modern pharmacologic researches found that *Euonymus* plants have immunosuppressive, antitumor-promoting and cytotoxic, antiviral, and anti-inflammatory properties [1]. *Euonymus fortunei*, as a plant of *Euonymus*, has been widely used for various diseases in the nationalities area, such as hemorrhage (stanching bleeding), bruises, and strain of lumber muscles [2]. In the last 20 years, many dihydroagarofuran sesquiterpene alkaloids have been isolated from Celastraceae plants; however, just twelve sesquiterpene alkaloids have been obtained from the genus *Euonymus* [3–8]. Some of these sesquiterpene pyridine alkaloids have been of interest because of their cytotoxicity against several human-tumor cell lines [9] and insect antifeedant and insecticidal activities [10]. Previous chemical investigations on the *fortunei* species demonstrated the presence of triterpenes [11–12], lignans [13], and dihydroagarofuran polyesters [14].

In the present study, three new β -dihydroagarofuran sesquiterpene pyridine alkaloids, fortuneines A¹) (1), B¹) (2), and C¹) (3), along with four known compounds, wilfornine E (4), aquifoliunine E-I (5), euoverrine B (6), and euojaponine I (7), were isolated by repeated column chromatography from the CHCl₃ partitioning of the EtOH extract of the aerial parts of *E. fortunei* (*Fig. 1*) (β -dihydroagarofuran = (3R,5aS,9-R,9aS)-octahydro-2,2,5a,9-tetramethyl-2H-3,9a-methano-1-benzoxepin). Their structures were elucidated by spectroscopic methods, especially 2D-NMR techniques. This article mainly describes the isolation and structure elucidation of these new compounds.

¹⁾ Arbitrary atom numbering; for systematic names, see Exper. Part.

Fig. 1. Compounds 1-7 isolated from Euonymus fortunei

Results and Discussion. – Compound **1**, obtained as white powder, gave a molecular-ion peak $[M+\mathrm{Na}]^+$ at m/z 875.2825 in its high-resolution (HR) ESI-MS, corresponding to the molecular formula $\mathrm{C_{42}H_{48}N_2O_{17}}$. Its $^1\mathrm{H}\text{-}\mathrm{NMR}$ spectrum (Table) showed the presence of five Ac groups ($\delta(\mathrm{H})$ 1.86, 2.13, 1.94, 2.18, and 2.21 (5s)), three Me groups ($\delta(\mathrm{H})$ 1.10 (d,J=7.0 Hz), 1.29 (d,J=8.0 Hz), and 1.62 (s)), two O-acylated CH₂ groups ($\delta(\mathrm{H})$ 3.60 and 5.80 (2d,J=11.5 Hz, each 1 H); 4.33 and 5.47 (2d,J=11.5 Hz, each 1 H);

13.0 Hz, each 1 H)), two other CH₂ groups (δ (H) 1.95 (m) and 2.23 – 2.26 (m); 3.80 – 3.86 (m) and 3.98 – 4.02 (2m)), a 2',3'-disubstituted pyridine ring (δ (H) 7.41 (dd, J = 8.0, 2.0 Hz), 8.40 (dd, J = 8.0, 5.0 Hz), and 8.68 (dd, J = 5.0, 2.0 Hz)), a 3"-disubstituted pyridine (Nic) ring (δ (H) 7.61 (dd, J = 4.5, 8.0 Hz), 8.47 (ddd, J = 8.0, 2.0, 2.0 Hz), 8.79 (dd, J = 4.5, 2.0 Hz), and 9.17 (s)), three CH groups ($\delta(H)$ 2.62 (d, J = 4.0 Hz), 2.74– 2.77 (m) and 2.72 - 2.79 (m), and six O-bearing CH groups ($\delta(H)$ 5.03 (br. s), 5.39 (d, J = 6.0 Hz), 5.51 (dd, J = 4.0, 2.0 Hz), 5.57 (dd, J = 4.0, 6.0 Hz), 5.78 (d, J = 4.0 Hz), and 6.68 (s)). The ¹³C-NMR data (*Table*) revealed the presence of eight Me, four CH₂, and 17 CH groups, and 14 quaternary C-atoms including eight C=O groups. These data suggested that the compound might be a macrocyclic β -dihydroagarofuran-type sesquiterpene dipyridine alkaloid which has a nicotinoyl group, as reported for aquifoliunine E-IV [15]. The nicotinoyl group was located at C(7) since the HMBC spectrum (Fig. 2) showed a long-range correlation between the H-atom at $\delta(H)$ 5.57 (H-C(7)) and the ester C=O at $\delta(C)$ 165.1 as well as between the signals at $\delta(H)$ 8.47 (H-C(4")) and 9.17 (H-C(2")) and the same C=O group. In addition, the H-atoms at $\delta(H)$ 5.78 (H–C(1)), 5.51 (H–C(2)), 6.68 (H–C(5)), 5.39 (H–C(8)), and 4.33 and 5.47 (CH₂(11)) showed long-range correlations with the C=O groups of the Ac groups at $\delta(C)$ 171.0, 171.1, 171.3, 171.9, and 171.8, respectively. Furthermore, the HMBC spectrum of 1 showed the cross-peaks H–C(3) $(\delta(H) 5.03)/C(11')$ $(\delta(C) 176.6)$ and H-C(15) ($\delta(H)$ 5.80)/C(12') ($\delta(C)$ 166.6), indicating that the 2-(3-carboxybutyl)nicotinic acid moiety should be connected at C(3) and C(15) on the β -dihydroagarofuran skeleton. The relative orientations of the Ac groups at the β -dihydroagarofuran skeleton of 1 were determined by analysis of the ROESY data (Fig. 2). The following NOEs were observed: H-C(8)/H-C(1) and Me(14), Me(12)/H-C(3), H-C(5), and H–C(11) (δ 5.47), and H–C(6)/H–C(5). These spectral data and the coupling constants of the H-atoms of the β -dihydroagarofuran skeleton suggested that the relative orientation of the Ac groups could be assigned as $(1\alpha, 2\alpha, 3\beta, 5\beta, 7\alpha, 8\alpha)$. Hence, the structure of **1** was confirmed as shown in Fig. 1.

The ROESY data of the new alkaloids **2** and **3** showed that the relative configuration on the β -dihydroagarofuran moiety was the same as that of **1**.

Compound **2** had an $[M+Na]^+$ ion peak at m/z 875.2825 in its HR-ESI-MS, corresponding to the molecular formula $C_{42}H_{48}N_2O_{17}$. The spectral data were similar to those of **1**, except for the presence of signals of a CH group at $\delta(H)$ 4.18 (H–C(7')) and $\delta(C)$ 37.7 (C(7')) and the addition of a d at $\delta(H)$ 1.43 (H–C(9')). The HMBC spectrum of **2** exhibited the cross-peaks $\delta(H)$ 4.18 (H–C(7'))/ $\delta(C)$ 127.9 (C(3')), 176.0 (C(11')), and 13.3 (C(9')), and $\delta(H)$ 1.43 (H–C(9'))/ $\delta(C)$ 37.7 (C(7')). These correlations indicated that one H–C(7') of **1** is replaced by a Me group in **2**. Thus, the structure of **2** was determined as shown in *Fig. 1*.

Compound 3 had an $[M+Na]^+$ ion peak at m/z 846.2581 in its HR-ESI-MS, corresponding to the molecular formula $C_{41}H_{45}NO_{17}$. The spectral data were similar to those of 1, except for the existence of signals of a C=O group ($\delta(C)$ 197.5), one Bz group ($\delta(H)$ 7.38 (dd, J=7.5, 8.0 Hz), 7.50 (dd, J=8.0, 8.0 Hz), and 8.26 (d, J=7.5 Hz)), and an OH group $\delta(H)$ 5.43 (s). The HMBC spectrum of 3 exhibited the correlations between the H-atoms at $\delta(H)$ 3.67 (H–C(δ)) and 6.18 (H–C(δ)) and the ketone C-atom at $\delta(C)$ 197.5, and between the H-atoms at $\delta(H)$ 6.16 (H–C(1)) and the ester C=O group at $\delta(C)$ 165.7, the latter being correlated with the H-atoms at $\delta(H)$

Table. ¹*H*- and ¹³*C*-NMR Data of Compounds $1-3^1$). δ in ppm, J in Hz.

	1^{a})		2 ^b)		3 ^b)	
	$\delta(\mathrm{H})$	δ(C)	δ(H)	δ(C)	δ(H)	δ(C)
H-C(1)	5.78 (d, J = 4.0)	72.1	5.82 (d, J = 4.0)	71.6	6.16 (d, J = 3.3)	73.6
H-C(2)	5.51 (dd, J = 4.0, 2.0)	70.1	5.52 (dd, J = 4.0, 2.0)	69.7	5.81 (dd, J = 3.3, 3.2)	70.8
H-C(3)	5.03 (br. s)	75.8	4.92 (br. s)	74.9	5.58 (d, J = 3.2)	76.1
H-C(4)	2.74 - 2.77 (m)	38.1	2.80 (q, J = 7.6)	36.8		70.6
H-C(5)	6.68 (s)	74.8	6.74 (s)	74.8	7.05 (s)	74.9
H-C(6)	2.62 (d, J = 4.0)	51.4	2.21 (d, J = 3.6)	50.8	3.67 (s)	62.9
H-C(7)	5.57 (dd, J = 4.0, 6.0)	75.0	5.63 (dd, J = 3.6, 6.0)	74.7	1	197.5
H-C(8)	5.39 (d, J = 6.0)	72.3	5.37 (d, J = 6.0)	71.6	6.18 (s)	80.4
C(9)	I	51.7	I	51.4	I	54.2
C(10)	1	91.9	ı	91.5	I	92.6
$CH_2(11)$	4.33, 5.47 (2d, J=13.0)	61.6	4.34, 5.36 (2d, J = 13.2)	6.09	4.96, 5.65 (2d, J = 13.1)	6.09
Me(12)	1.29 $(d, J = 8.0)$	15.6	1.29 $(d, J=7.2)$	15.0	1.67(s)	24.5
C(13)	I	84.4	I	83.4	I	87.1
Me(14)	1.62 (s)	18.2	1.53 (s)	18.4	1.51(s)	18.8
$CH_2(15)$	3.60, 5.80 (2d, J=11.5)	70.2	3.93, 5.24 (2d, J = 11.2)	70.2	4.26, 6.04 (2d, J = 11.7)	71.0
C(2')	I	164.0	I	164.3	I	163.6
C(3')	I	127.4	I	127.9	I	125.6
H-C(4')	8.40 (dd, J = 8.0, 2.0)	140.4	8.02 (dd, J = 8.0, 1.8)	138.6	8.27 (dd, J = 7.9, 1.8)	139.3
H-C(5')	7.41 $(dd, J = 8.0, 5.0)$	122.8	7.27 (dd, J = 7.8, 4.8)	122.0	7.27 (dd, J = 7.9, 4.8)	121.6
H-C(6')	8.68 (dd, J = 5.0, 2.0)	153.4	8.70 (dd, J = 4.8, 1.8)	151.7	8.83 (dd, J = 4.8, 1.8)	153.6
$CH_2(7)$ or $H-C(7')$	3.98-4.02, 3.80-3.86 (2m)	34.4	4.18 (q, J = 7.0)	37.7d	3.20 - 3.25, 4.07 - 4.12 (2m)	34.4
$CH_2(8')$ or $Me(8')$	$2.23-2.26 \ (m)$	32.7	2.75(q, J=7.3)	4.4 4.4	2.34-2.41(m)	34.0
H-C(9')	2.72-2.79 (m)	38.1	1.43 $(d, J = 7.0)$	13.3	2.74-2.79 (m)	39.6
Me(10')	1.10 (d, J = 7.0)	19.5	1.25(d, J=7.3)	10.6	1.22 $(d, J = 7.0)$	18.8
C(11')	ı	176.6	ı	176.0	1	175.7
C(12')	I	166.6	I	168.3	I	169.4
C(1'')	I	I	I	I	I	129.9
H-C(2'')	9.17 (s)	151.4	9.30 (d, J = 2.0)	151.9	8.26 (d, J=7.5)	129.5
C(3'') or $H-C(3'')$	I	126.8	1	125.4	7.38 (dd, J = 7.5, 8.0)	130.4

Table (cont.) $\frac{1^{a}}{\delta(H)} \qquad \qquad \frac{2^{b}}{\delta(H)} \qquad \qquad \delta(C)$

	1^{a})		2 ^b)		3 ^b)	
	$\delta(\mathrm{H})$	δ(C)	δ(H)	δ(C)	$\delta(\mathrm{H})$	δ(C)
H-C(4")	8.47 (ddd, J = 8.0, 2.0, 2.0)	139.2	8.41 $(dd, J = 8.0, 2.0)$	137.9	7.50 $(dd, J = 8.0, 8.0)$	134.5
H-C(5'')	7.61 (dd, J = 4.5, 8.0)	125.4	7.50 (dd, J = 4.8, 8.0)	123.6	7.38 (dd, J = 7.5, 8.0)	130.4
H-C(6'')	8.79 (dd, J = 4.5, 2.0)	154.6	8.84 (dd, J = 4.8, 2.0)	154.9	8.26 (dd, J=7.5)	129.5
AcO-C(1)	1.86 (s)	20.6, 171.0	1.83 (s)	20.8, 170.1		I
AcO-C(2)	2.13 (s)	20.7, 171.1	2.15 (s)	20.9, 170.2	2.17 (s)	20.9
AcO-C(5)	1.94 (s)	21.1, 171.3	1.93 (s)	21.3, 170.3	2.21 (s)	21.5, 171.3
AcO-C(8)	2.18 (s)	21.2, 171.9	2.20 (s)	21.6, 171.0	1.55 (s)	20.1, 170.4
AcO-C(11)	2.21 (s)	21.2, 171.8	2.21 (s)	21.4, 170.8	1.99 (s)	20.9, 171.2
NicCOO-C(7)	1	165.1	1	164.5		I
PhCOO-C(1)	I	ı	ı	ı	ı	165.7
OH-C(4)	I	I	I	I	5.43 (s)	I
^a) In CD ₃ OD at 5	In CD ₃ OD at 500 (¹ H) and 125 MHz (¹³ C). ^b) In C ₅ D ₅ N at 400 (¹ H) and 100 MHz (¹³ C).	In C ₅ D ₅ N at 400 (¹ H) and 100 MHz (¹³ C).			

Fig. 2. Significant HMBC (H \rightarrow C) and ROESY (H \leftrightarrow H) features of compound 1

8.26 (H–C(2",6")) of to the Bz group. These correlations indicated that the CH(7)–O group of $\bf 1$ is replaced by a C=O group in $\bf 3$, and that the Bz group should be located at C(1). As a result, the structure of $\bf 3$ was confirmed as shown in *Fig. 1*.

Upon comparison with values reported in the literature, several known compounds were identified by their spectral data as wilfornine E (4) [16], aquifoliunine E-I (5) [17], euoverrine B (6) [18], and euojaponine I (7) [5]. According to the reports, aquifoliunine E-I (5) exhibited weak but selective activity in a mechanism-based DNA-modifying yeast assay, indicating that they might be responsible for the slight DNA-damaging activity of the plant [19]. The insecticidal activity of euoverrine B (6) against *Mythimna separata* was KD_{50} 21.6 μ g g⁻¹ [4].

We gratefully acknowledge financial support of this work by the *Guangxi Natural Science Foundation of China* (No. 0991006).

Experimental Part

General. TLC: silica gel GF_{254} plates precoated (SiO₂; Qingdao Haiyang Chemical Co., Ltd., P. R. China). Column chromatography (CC): SiO₂ (200–300 mesh; Qingdao Haiyang Chemical Co., Ltd., P. R. China) and C_{18} reversed-phase SiO₂ (YMC Co., Ltd., Japan). HPLC: Ultimate-3000 HPLC system; Ultimate-3000 pump; Ultimate-3000 variable-wavelength detector; column Waters $5C_{18}$ -MS-II (10×250 mm). UV Spectra: SP-2102UVPC spectrometer; λ_{max} in nm. 1 H- and 13 C-NMR Spectra: Bruker-AM-400 instrument, Bruker-AM-500 instrument; δ in ppm rel. to Me₄Si as internal standard, J in Hz. ESI- and HR-ESI-MS: VG-Auto-Spec-3000 and Waters/Micromass-Q-Tof-Ultima spectrometers, resp., in m/z (rel. %).

Plant Material. The plant material was collected from the Guangxi Zhuang Autonomous Region, P. R. China, and identified by Prof. *Dingrong Wan*, College of Pharmacy, South-Central University for Nationalities, P. R. China, wherein the voucher specimen (0708) is deposited.

Extraction and Isolation. The milled, air-dried aerial parts of Euonymus fortunei (7.5 kg) were powered and then extracted three times with 95% EtOH at r.t. The dried EtOH extract (490 g) was suspended in 90% MeOH/H₂O and then partitioned with petroleum ether (3×4.01), CHCl₃ (3×4.01), and BuOH (3×4.01). The CHCl₃ extract (149 g) was applied to CC (SiO₂, cyclohexane/AcOEt 9:1, 8:2,

7:3, 1:1, 3:7, and 0:1): Fractions 1-12. Fr. 9 (3.0 g) was subjected to CC (ODS, H₂O/EtOH 9:1 \rightarrow 7:3): Frs. 9.1 – 9.10. Fr. 9.6 (255.6 mg) was subjected to CC (ODS, H₂O/EtOH 7:3 \rightarrow 0:1) and then further purified by semi-prep. HPLC (MeOH/H₂O 75:25): **5** (35.3 mg, 2.2 ml/min). Fr. 10 (4.8 g) was subjected to CC (SiO₂, CHCl₃/MeOH 95:5 \rightarrow 0:1): Frs. 10.1 – 10.6. Fr. 10.1 (595.2 mg) was subjected to CC (ODS, H₂O/EtOH 7:3 \rightarrow 0:1): Frs. 10.1.1 – 10.1.3. Fr. 10.1.2 (62.8 mg) was subjected to CC (ODS, H₂O/EtOH 9:1 \rightarrow 7:3) and then further purified by semi-prep. HPLC (MeOH/H₂O 60:40): **2** (3.6 mg, 2.3 ml/min), **3** (12.8 mg, 2.3 ml/min), **4** (8.0 mg, 2.3 ml/min), and **6** (6.7 mg, 2.3 ml/min). Fr. 10.5 (663.7 mg) was subjected to CC (ODS, H₂O/EtOH 8:2 \rightarrow 4:6): Frs. 10.5.1 – 10.5.9. Fr. 10.5.1 (62.8 mg) was applied to semi-prep. HPLC (MeOH/H₂O 10:90): **1** (5.2 mg, 3 ml/min) and **7** (5.0 mg, 3 ml/min).

Fortuneine A (= rel-(8R,9R,10R,11S,12R,13R,14S,15R,21R,22S,23R)-10,13,14,22-Tetrakis(acetyloxy)-12-[(acetyloxy)methyl]-7,8,9,10,12,13,14,15,17,18,19,20-dodecahydro-8,18,21-trimethyl-5,17-dioxo-8,11-epoxy-9,12-ethano-11,15-methano-5H,11H-[1,9]dioxacyclooctadecino[4,3-b]pyridin-23-yl Pyridine-3-carboxylate; 1): White powder. [α] $_{0}^{\text{D}}$ = +13 (c = 0.26 MeOH). UV (MeOH): 233, 269. 1 H- and 13 C-NMR: Table. HR-ESI-MS: 852.2825 ([M + Na] $_{0}^{\text{H}}$, C_{42} H₄₈N₂O₁₇Na $_{0}^{\text{H}}$; calc. 875.2851).

Fortuneine B (= rel-(8R,9R,10R,11S,12R,13R,14S,15R,20R,21S,22R)-10,13,14,21-Tetrakis(acetyloxy)-12-[(acetyloxy)methyl]-5,7,8,9,10,12,13,14,15,17,18,19-dodecahydro-8,18,19,20-tetramethyl-5,17-dioxo-8,11-epoxy-9,12-ethano-11,15-methano-11H-[1,8]dioxacycloheptadecino[4,3-b]pyridin-22-yl Pyridine-3-carboxylate; 2): White powder. [a] $_{0}^{20}$ = +6 (c = 0.18 MeOH). UV (MeOH): 236, 270. 1 H- and 13 C-NMR: Table. HR-ESI-MS: 852.2825 ([M+Na] $^{+}$, C_{42} H $_{48}$ N $_{2}$ O $_{17}$ Na $^{+}$; calc. 875.2851).

Fortuneine C (= rel-(8R,9R,10R,11S,12S,13R,14R,15S,21S,22S)-10,14,22-Tris(acetyloxy)-12-[(acetyloxy)methyl]-13-(benzoyloxy)-7,8,9,10,12,13,14,15,19,20-decahydro-21-hydroxy-5,18,21-trimethyl-8,11-epoxy-9,12-ethano-11,15-methano-5H,11H-[1,9]dioxacyclooctadecino[4,4-b]pyridine-5,17,23(18H)-trione; 3): White powder. [α] $_{0}^{20}$ = +30 (c = 0.45 MeOH). UV (MeOH): 291. 1 H- and 13 C-NMR: Table. HR-ESI-MS: 846.2581 ([M + Na] $^{+}$, C $_{41}$ H $_{45}$ NO $_{17}$ Na $^{+}$; calc. 846.2585).

REFERENCES

- [1] J.-M. Gao, W.-J. Wu, J.-W. Zhang, Y. Konishi, Nat. Prod. Rep. 2007, 24, 1153.
- [2] H.-G. Liu, Q.-U. Lian, Guangxi J. Tradit. Chin. Med. 2003, 26, 130.
- [3] J. Hohmann, G. Nagy, Z. Dini, G. Günther, I. Pelczer, G. Jerkovich, L. Varjas, J. Nat. Prod. 1995, 58, 1192.
- [4] J. Zhu, M. Wang, W. Wu, Z. Ji, Z. Hu, Phytochemistry 2002, 61, 699.
- [5] B. H. Han, M. K. Park, J. H. Ryu, J. H. Park, H. Naoki, Phytochemistry 1990, 29, 2303.
- [6] C. Descoins Jr., I. L. Bazzocchi, A. G. Ravelo, Chem. Pharm. Bull. 2002, 50, 199.
- [7] J. Hohmann, G. Nagy, G. Günther, L. Varjas, *Phytochemistry* **1993**, *34*, 879.
- [8] B. H. Han, J. H. Ryu, Y. N. Han, M. K. Park, J. H. Park, H. Naoki, J. Nat. Prod. 1990, 53, 909.
- [9] Y.-H. Kuo, M.-L. King, C.-F. Chen, H.-Y. Chen, C.-H. Chen, K. Chen, K.-H. Lee, J. Nat. Prod. 1994, 57, 263.
- [10] O. Shirota, A. Otsuka, H. Morita, K. Takeya, H. Itokawa, Heterocycles 1994, 38, 2219.
- [11] J. Katakawa, T. Tetsumi, H. Hasegawa, Nat. Med. 2000, 54, 18.
- [12] P. Li, H. Li, *Chin. Pharm. J.* **2000**, *35*, 847.
- [13] F.-L. Qu, Q.-L. Ding, H.-M. Zhang, J. Nanjing Mil. Med. Coll. 2001, 23, 221.
- [14] X. Yuan, X.-J. Wu, Nat. Prod. Res. Dev. 1994, 6, 37.
- [15] J. Corsino, V. da S. Bolzani, A. M. S. Pereira, S. C. França, M. Furlan, *Phytochemistry* 1998, 49, 2181.
- [16] H. Duan, Y. Takaishi, H. Momota, Y. Ohmoto, T. Taki, Y. Jia, D. Li, J. Nat. Prod. 2001, 64, 582.
- [17] J. Corsino, V. da S. Bolzani, A. M. S. Pereira, S. C. França, M. Furlan, *Phytochemistry* 1998, 48, 137.
- [18] H. Duan, Y. Takaishi, Y. Jia, D. Li, Chem. Pharm. Bull. 1999, 47, 1664.
- [19] F. Borrelli, N. Borbone, R. Capasso, D. Montesano, A. A. Izzo, S. De Marino, F. Capasso, L. Ferrara, R. Longo, F. Zollo, *Planta Med.* 2004, 70, 652.

Received November 8, 2010